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Historical context

Businesses are eagerly adapting Large Language Models (LLMs) to 
streamline operations, improve resilience and build competitive
advantage through task automation and extension. However, navigating 
the complexities of LLM implementation at scale poses challenges with 
evolving technology and many variables in enterprise implementations. To 
maximize LLM benefits, enterprises need not only technical expe�ise to 
construct and implement the models, but to get value from them quickly, 
they must adopt a realistic outlook on where these models can pe�orm at 
a consistently high level against potential use cases. 

Our team of data scientists recently conducted a series of in-depth 
experiments with LLMs aimed at deriving mature, actionable and practical 
insights to assist large organizations in se�ing and surpassing accurate 
expectations regarding LLMs. The insights illuminate key strengths, 
limitations and main resource demands of prominent models offering a 
guidance on their suitability for various enterprise use cases.

This whitepaper begins by establishing the context necessary for
developing a working understanding of LLMs, followed by an exploration 
of the tools, techniques and methodologies employed in our experiments 
and applicable in enterprise-grade use cases. Finally, it presents the 
results and draws longer-term conclusions from them.

To understand the current AI boom, we need trace back to 2017 and the 
debut of Transformers by Google researchers. These models marked a 
breakthrough by processing sentences, rather than relying on sequential 
understanding like previous models. This parallel processing capability, 
enabled by a�ention mechanism which provides information about the 
relationships between the words of the text, not only boosts efficiency but 
also allows models to ‘remember’ and consider earlier sections of the text 
while generating output. 

Following the popularity of Transformers and a�ention mechanisms, 
OpenAI launched their GPT series, which prioritized advanced weighing of 
words and were specifically trained to be best at predicting the next token 
only. 

Some researchers suggest that the latest ireration in the series, GPT-4, 
released in 2023, displays sparks of A�ificial General Intelligence (AGI) due 
to its broad knowledge across extensive range of topics, human-like 
cognitive capabilities and ability to handle not only text but visual input as 
well.
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Defining LLMs
LLMs, like GPT-3.5 and GPT-4 boast an exceptionally high number of 
parameters, trained on petabytes of textual data from the internet.
Parameters are like neurons in the brain, essentially enabling GPT models 
to simulate human-like cognition. For reference, an average human brain 
has approximately 80-100 billion neurons, while ChatGPT built on GPT-3.5, 
features around 175 billion parameters, while GPT-4 might reach 1 trillion. 
This illustrates why LLMs excels at generative tasks such as summarizing 
documents, writing code and synthesizing knowledge as increasingly 
adaptive assistants that leverage conversational inte�aces, albeit at a 
high resource cost of training, inference and maintenance, notably in 
terms of computational power.

The leading LLM service is currently offered by OpenAI, offering multiple 
models through an API with diverse possibilities such as embeddings, 
completions, moderations and more alongside Azure integration.
Promising alternatives to OpenAI’s offerings are constantly emerging, 
many of which are open source, greatly expanding customization
oppo�unities.

See the following table for a high-level comparison of closed-dev and 
open-source LLMs:

Note -the difference between a model from an application: GPT3.5, GPT-4 
and LLaMa (LLama is a family of autoregressive large language models, 
released by Meta AI sta�ing in February 2023.) are models, while ChatGPT 
is a chatbot application built on top of GPT3.5 and GPT-4. Other promi-
nent applications include GitHub Copilot, a code assistant and Microsoft 
Bing, both of which use a version of GPT.

API calls  - closed-dev
(e.g. GPT-3.5/4)

Local hosting  - open-source
(e.g. Dolly, LLaMa, Alpaca)

Advantage

Easy setup

Low latency 

Cu�ing-edge models
are available 

Greater selection
of models 

Independent  
Lower inference cost 

Disadvantage

Higher long-term
costs 
Dependent on third
pa�y API  

Complex and costly
setup  
Weaker models   

The main advantages and drawbacks of closed-dev and open-source LLMs
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The experiments 
The experiments conducted for this paper aimed to reveal insights 
regarding key pe�ormance considerations, such as identifying most 
suitable model or service for specific tasks and understanding associated 
costs and resource needs. To provide a full picture, the discussion will 
delineate various considerations across different experiments,
showcasing and comparing the capabilities and limitations of LLMs across 
different tasks.

Database assistants 

Knowledge graphs with LLMs 

In our first experiment, we focused on an information retrieval use case 
centered on searching directly inside databases instead of focusing on 
embeddings. We primarily utilized OpenAI models but had also auditioned 
open-source alternatives. Beyond examining the querying capabilities, this 
experiment highlighted the key differences between the models.

Our database based on PostgreSQL comprised multiple tables. SQL being 
a widely used language in most companies, have these types of
databases, we found it intriguing to explore how an LLM could answer 
questions about such a data source without the need for manually writing 
SQL queries.

The second use case combines knowledge graphs with LLMs to unlock 
multiple benefits, such as greatly mitigating the hallucinations and 
propensity for factual incorrectness that have limited the
enterprise-grade adaptability of these models. While LLMs’ possess 
implicit knowledge within their parameters, inaccessible and
unexplainable to humans, their training on a general corpus limits their 
ability to fully adapt to specific domains unassisted and have a knowledge 
cutoff, renders them unable to answer questions beyond their training 
data. Their output can also contain hallucinations and other kinds of 
factually incorrect answers. Knowledge graphs hold promise in enhancing 
the effectiveness of LLMs by providing structured knowledge
representation. However, building an adequate knowledge graph is 
complex and lacks established best practices. 

Therefore, the experiment also involved leveraging LLMs to assemble lists 
of nodes and edges and, ultimately, creating a knowledge graph from raw 
textual data. With the newly established graph, we delved into information 
retrieval methodology and corner cases in depth. Given embeddings are 
commonly used to tackle most of the above-mentioned problems, we 
compared the graph-based and embedding-based solutions across 
various cases to see how they stack up and whether a graph can really 
solve the limited information spanning that’s typical of embeddings.
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LLMs with tools

OpenAI services as the state of the a�

Price

The third use case entails a sma� gardener assistant designed to
showcase the power of chaining using LangChain. For this experiment,
OpenAI’s GPT-3.5 model serves as the brain and equipped with tools like 
image recognition, internet search and database querying. The goal is to 
assess the health of plants and offer care suggestions if any issues arise, 
focusing on developing a complex workflow with chaining and employing 
‘chain-of-thought’ thought-action-observation cycles.

Models and other tools
This section discusses in detail the toolset and methodologies that we 
auditioned for the abovementioned enterprise-grade LLM experiments.

When embarking on serious experimentation with LLMs, the logical 
sta�ing point is to utilize a tool from the developers of ChatGPT. OpenAI 
boasts the most mature product currently available, renowned for its 
response quality and hallucination reduction, establishing itself a primary 
innovator in the field. Naturally, we sought to asce�ain if these
characteristics translate to generally superior suitability for business use 
cases.

Given that ChatGPT is already a comprehensive chatbot application, the 
underlying model serves as the core building block for the experiment. 
This was made feasible through the OpenAI API, offering access to various 
versions of the models, including GPT-4, the latest and most powe�ul 
iteration and GPT-3.5, the model underpinning first iteration of ChatGPT. 
One benefit of using the API is its provision of access to model
configuration parameters. While chatGPT only pass dialogue text, API 
enables manipulation of parameters such as temperature, governing the
randomness of the model output and role, allowing contextual se�ing for 
the agent’s operate. These configuration options cater to the needs of the 
enterprise environment and the intended use cases for deploying the 
models.

When evaluating pricing options, two primary main factors come into play: 
context window size and the underlying model. The context window 
determines the maximum number of tokens that can be processed by the 
models at once, essentially defining the maximum amount of information 
they can handle. OpenAI’s largest context window size currently available 
for GPT-4 is 32k tokens, roughly equivalent to the content of 40 A4-size 
pages. Leveraging the API with this configuration costs $0.12 per 1000 
tokens, which aligns with the content of the A4 page. While seemingly 
affordable initially, these costs can accumulates rapidly, pa�icularly for 
enterprises dealing with a large user base.
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Older models such as GPT-3.5, boasting a 16k context window size, come 
at a mere $0.004 per 1000 tokens, representing a significant cost
reduction. However, this reduction in cost accompanies a trade off in 
power; earlier models are more susceptible to errors in reasoning and 
exhibit higher levels of bias. Neve�heless, these characteristics may still 
render them suitable for applications with narrower scope and
functionality. 

A variety of open-source LLMs, including LLaMa, Alpaca, Vicuna, Falcon 
and Dolly, present alternatives to OpenAI’s offerings, differing mainly in 
model size. While GPT-4 boasts around one trillion parameters, leading 
HuggingFace’s LLaMa-2 adaptations features 70 billion parameters. 
Despite their smaller size, these models are capable of human-like 
conversation, albeit less refinement compared to ChatGPT. However, their 
smaller context window, such as LLaMa’s 4K compared to GPT-3.5 Turbo’s 
16K, limits their ability to handle large amounts of information at once.

One advantage of open-source models is the ability to host them locally, 
eliminating reliance in third-pa�y servers and APIs. However, managing 
the infrastructure falls on the user, incurring additional setup costs. Cloud 
services can help mitigate this to a degree by leveraging a cloud service, 
but defining the architecture will still be the user’s task.

Fu�hermore, open-source models empowers users to train them on a 
custom dataset, unlike OpenAI offerings that mainly suppo� fine-tuning. 
However, their models are highly generic, so these options are only ever 
relevant for specific tasks. The downside of training your own LLMs is that 
it necessitates significantly more resources, for instance, training a model 
is much more challenging than using it for inferencing. Our suggestion 
would be staying away from this option for business use cases and leaving 
it to research teams unless the use case necessitates specialized data 
management, for example due to the sensitivity of the data.

Moreover, open-source models may pose a significant limitation in 
business application: many are only available under non-commercial 
licenses. It’s essential to examine these license terms before adopting 
these models. For example, the LLaMa model, published by Facebook 
Research, restricts commercial use, affecting all derivatives based on it. 
However, the new LLaMa-2 model operates a commercial-friendly license. 
In contrast, other prominent fully open models like Falcon, Dolly and 
OpenAssistant are all suitable for commercial purposes.

Open-source alternatives

Model chaining as a new 
way of orchestration
Language models are, to a degree, single-task-specific. This task can have 
a narrow focus, such as code generation or broader utility such as
maintaining a humanlike dialogue with the user. To enable models to work 
together in solving complex tasks, we use so-called “model chaining” 
frameworks.
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In these frameworks, one language model acts as an agent: it breaks 
down a complex task into simple subtasks and delegates them to
tools — which may also be language models — and continues this in an 
iterative loop until the main task is solved. This helps to create agents that 
have humanlike problem-solving capabilities, extended or limited by the 
tools with which they are equipped. Such tools typically include web 
search, SQL database connections, code generators, etc. 

LangChain is a versatile LLM chaining tool suppo�s several open-source 
models alongside OpenAI’s GPT models. It comes with a comprehensive 
set of integrated tools, including the Google API for web search, an SQL 
wrapper for database queries and various classes for streamlined API calls 
that handle errors efficiently. It even facilitates the creation of custom 
tools and agents boasting extensive documentation tutorials and a 
suppo�ive community to help users at all levels of expe�ise.

LangChain

HayStack

HayStack specializes in creating both general conversational agents and 
those tailored for answering questions about specific documents. With 
HayStack creating memory-equipped chatbots requires minimal code, 
eliminating the need for defining custom classes. However, one major 
downside of Haystack is that its less flexible tooling compared to
LangChain and currently exclusive suppo�s models from OpenAI. 

JARVIS

JARVIS serves as a model chaining agent that seamlessly integrates 
language models with HuggingFace machine learning models. Users can 
effo�lessly define task and provide a corresponding inputs allowing 
JARVIS to automatically invoke appropriate model. For example, JARVIS 
can identify the breed of dog is in an image, without requiring explicit 
coding for each task. Unfo�unately, JARVIS currently has no integration 
with other tools such as web search.

Experiment processes
and results
This section delve into the key takeaways from the three experiments and 
what they might mean for businesses. For each experiment, we will provide 
an overview of the setup and the various phases before evaluating the 
results.
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Database assistant

The setup

To review, this experiment had two main goals: 

Create an information retrieval system that shows the SQL querying 
capabilities of LLMs.

See how various LLMs — open-source and leading OpenAI models 
— stack up in various aspects.

To make measurements that would enable us to get usable insights from 
the experiments, we creating an SQL database was imperative. Opting a 
publicly available dataset featuring multiple tables of dummy HR data for 
a fictional small business, we included information such as employees’ 
personal data, their job titles and more. This below image depicts the 
database schema with the connections:

The database schema used in the database assistant experiment

E43

Once we initialized this database in a PostgreSQL environment, we 
ensured its accessibility through secure API facilitating seamless
interactions from code.

*job_id
  job_title
  min_salary
  max_salary

jobs

*employee_id
first_name
last_name
email
phone_number
hire_date
job_id
salary
manager_id
depa�ment_id

employees

*depa�ment_id
  depa�ment_name
  location_id

depa�ments * location_id
   street_adress
   postal_code
   city
   state_province

locations
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tour subsequent task involved scouting for candidate LLMs. We aimed to 
identify models with distinct advantages while adhering to two 
constraints: they needed to be relatively small and/or easily integrable. 
Our rationale behind this was that, if this use case were to go into
production, the domain would be small enough that it would have to run 
in a limited-resource environment and avoid a high setup cost. The next 
table lists the models used:

The models used in the database assistant experiment

The subsequent task involved constructing questions or prompts for the 
model, gradually increasing in difficulty. Initially, we formulated
straightforward questions that did not necessitate joining tables for 
answering. Subsequently, we designed questions still recognized as easy 
but incorporated synonyms. To tackle the most difficult questions, the 
model had to decipher not only the rephrasing but also, for example, 
joining and other advanced SQL techniques as well.

To facilitate the testing environment, we crafted a versatile testing script 
capable of adapting to various model inte�aces. When using OpenAI’s 
models proved uncomplicated for the open-source models, HuggingFace 
provided a coding framework ensuring unified and painless integration. 
When required, we used a GPU, typically opting for a smaller one like a 
Tesla T4.

Name Owner Parameters Context
size

License Open/
closed

Dolly-v2
-3B

Databricks 2.8 billion 2K MIT (commercial
use)

Open-source

GPT4All-13B-
SNOOZY
(GGML)

Nomic 13 billion 2K Apache-2
(commercial use)

Closed

LLaMa-2-7B Meta 7 billion 4K Commercial
use

Closed

LLaMa-2-13B Meta 13 billion 4K Commercial
use

Closed

GPT-3.5 OpenAI 175 billion 8K Commercial
use

Closed

GPT-4 Unknown
(estimated 1.7

trillion)

12K Commercial
use

ClosedOpenAI

The prompt and context

Every model received identical structured prompts and context. They were 
tasked with assuming the identity of a helpful assistant that transforms 
questions into SQL queries. Additionally, we furnished them with the 
database schema to acquaint them with the available fields for answering 
the user’s questions.
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OpenAI takes the lead with ease

The OpenAI models excelled in every test , effo�lessly executing basic 
SQL statements and adeptly rephrasing verbs and nouns from the
question to the SQL query based on the schema. They demonstrated 
exceptional proficiency in handling keys and joining statements. While 
their SQL results might not always have produced the best-pe�ormance, 
they consistently provided a reliable answer every time.

Interestingly, there was no significant pe�ormance gap between GPT-3.5 
and GPT-4, indicating that the older GPT is also comfo�ably capable of 
solving these kinds of problems. Not only did the models produce good 
results, but they were also stable, reproducible and very fast using OpenAI 
APIs.

Lightweight, with pe�ormance to match: Dolly

Dolly-V2, the smallest model pa�icipating in the experiment, struggled 
the most, failing most of the tests. The basic knowledge of SQL present in 
the model facilitated it to generate a correct functional query fo
questions such as, “How many employees are there?” or “How many 
employees have the last name King?”. It could even list the names when 
asked about the employees who joined before 1990, demonstrating 
decent functionality for its size.

However, the hallucinations and heavily ’generative a�itude’, repeatedly 
erring on the side of linguistic, rather than substantive appropriateness 
resulted in a mixed picture overall. For example, when asked “How long 
has Alexander Hunold been working at the company?” or “What is the role 
of Alexander Hunold?”, it simply generated a random number for the 
answer. So, for every complex query in the result was either a hallucination 
or syntax errors which stemmed from the misuse of the keys for joining 
and misunderstanding the questions.

Interestingly, Dolly results were sometimes hard to reproduce and the 
model has a strangely oscillating pe�ormance, which was highlighted 
when asked “List each depa�ment with the number of employees working 
for that depa�ment. Return the depa�ment name and the headcount.” 
Being a relatively complex statement, we expected the model to fail to 
provide an adequate output, only to be provided the following SQL query:

However, a glance at the context sizes foreshadowed a major difference 
among the models: Dolly and GPT4All models were constrained to a 2K 
context length, limiting their ability to handle larger datasets, while 
LLaMa-2 boasted a 4K context length and OpenAI comes out on top with 
its sizes in the 8K-32K range. Our example database is considered tiny but, 
for reference, our prompts cost an average of 200 tokens, not including 
the question. 
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SELECT d.depa�ment_name, COUNT(e.employee_id) 
FROM employees e 
JOIN jobs j ON j.job_id = e.job_id 
JOIN depa�ments d ON d.depa�ment_id = j.depa�ment_id 
JOIN locations l ON l.location_id = d.depa�ment_id 
GROUP BY d.depa�ment_name

Misuse of keys, joining by depa�ments.job_id (non-existent)

IT is in WHERE clause with LIKE searching in jobs.job_title (not using 
the “depa�ments” table)

This syntax was very close to the ideal answer since it only contains two 
mistakes - the key is wrong in the second JOIN clause since only the 
employees (e in the query) table has depa�ment_id and the jobs table 
does not. Fu�hermore, there is a similar issue with the third JOIN, as it 
should map l.location_id with d.location_id and not depa�ment_id. If 
corrected, this query would produce the desired output.

Beginning with the positive, despite its larger size (13 billion parameters vs. 
Dolly’s 2.8) GPT4All’s resource demand was comparable to Dolly’s.
However, despite being able to pe�orm basic tasks like counting rows with 
small WHERE clauses or filtering employees based on their hire dates, it 
kept making syntactical mistakes. It was unable to comprehend the 
parameter we provided in the prompt. For instance, when asked to count 
employees who have the le�er t in their name, the model searched for the 
capital le�er T and returned only a subset of the correct set. Fu�hermore, 
it was unable to utilize the right schema and employed fields from the 
overall schema with the wrong table. It also used clauses which were 
unnecessary frequently multiple times, adding a “WHERE employee_id = 
‘1234567890’ for no reason at all or tried to work with the manager_id 
field even if it wasn't mentioned at all.

In case of LLaMa-2, we emphasized on the smallest version, LLaMa-2-7B. 
LLaMa-2 is a new competitor in the market building on the original LLaMa 
by Meta. The key improvements in this tool are a bigger context size, with 
4K tokens and some pe�ormance gains. It has three versions,
differentiated by the number of parameters: the 7-billion “7B”, 13-billion 
“13B” and 70-billion “70B.”

The pe�ormance of LLaMa-2-7B was great, when medium level questions 
or prompts were aske. It was able to create basic SQL statements with 
WHERE, COUNT, LIKE, GROUP BY and DISTINCT clauses. However, it had 
some persistent problems, including misuse of the keys at joining and 
creating syntactically correct but functionally incorrect statements. For 
example, for the task of “Who has the max salary in IT and how much 
bigger is their salary compared to the minimum IT salary? Return the first 
name, last name and the difference as a number”, it encountered the 
following recurring errors:

Well-optimized but inaccurate: GPT4All

Meta’s Midranger: LLaMa-2
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IT filtering is completely ignored

Wrong calculation of differences (calculated against each
employee’s current salary, so the results were always zero)

Forgot GROUP BY clause

Random semicolons in the middle of statements

Using Oracle SQL statements, not PostgreSQL

If we extended the conversation into a chat and provided feedback on the 
error, LLaMa successfully resolved some issues, substituting the Oracle 
statement with another function that works in Postgre as well, including 
the overlooked GROUP BY and filtering for the IT depa�ment. However, in 
some cases like the above-mentioned example, it struggled to figure out 
the solution despite these li�le nudges.

We evaluated most of the questions against the bigger version, 
LLaMa-2-13B which unfo�unately did not produce much improvement. It 
handle cases similarly to LLaMa-2-7B and encountered the same errors in 
the identical scenarios. Fu�hermore, the reasons were similar, with
occasional failures in creating the appropriate JOIN clause and
overlooking specifical depa�ment filtere, for example. Interestingly, in 
ce�ain cases, the 13-billion-parameter version generated specific IDs that 
had nothing to do with the questions.

Both LLaMa models were accessed vua HuggingFace services. Responses 
remained consistent and relatively prompt, although the bigger model 
usually took twice as long to produce an answer as the seven
billion-parameter version. Additionally, the pe�ormance of the model 
enhanced when we kept the chat history limited, ideally maintaining one 
query at a time.

As a reminder, this experiment aimed to gauge whether knowledge graphs 
could offer a solution to overcome lingering inherent limitations of LLMs, 
such as lack of explainability, knowledge cutoffs, training and fine-tuning 
problems due to immense resource requirments, questionable reasoning 
capabilities, hallucinations and factual inconsistency.

While knowledge graphs show promise and are subject of intense
ongoing research, they are nit widely deployed at businesses. Building a 
versatile knowledge graph is an intricate task and best practices are yet to 
be established. Consequently, our first notable takeaway on the subject is 
that since knowledge graphs are uncommon, LLMs have limited
knowledge of them. Although the models understand the concept, 
relevant tools and use cases, Their pe�ormance may not match that more 
established domains like SQL use cases. Moreover. the challenge of 
fine-tuning with knowledge graphs arises from the disparity between 
LLMs are based on prompt-completion pairs the nodes and edges
structure of a graph, which makes fine-tuning an alignment between 
these both essential and challenging.

Knowledge graph
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Preparations

Can an LLM build a knowledge graph?

The knowledge graph according to GPT-3.5

As the first step, we endeavoured to construct a knowledge graph with an 
LLM. Given raw textual data and some prompt engineering, the model 
successfully managed to build a usable graph based on the provided 
information. Subsequently, we examined how well it could use the graph 
to extend its prompts with relevant information. For this experiment, we 
used Neo4j as the chosen graph database management system. Neo4j 
offers hosted databases with secure API connections. It employs Cypher 
for querying, a recent addition to the LangChain framework, which 
encompasees graph-querying modules with syntax-checking and
automated direct connection to sources. Throughiut this experiment, we 
extensively utilized OpenAI, since their models had consistently displayed 
the best pe�ormance. Given the complexity inherent in building a
knowledge graph, we deemed it unnecessary to subject other models to 
additional hurdles.

The OpenAI models demonstrated the ability to generate knowledge 
graphs once the right prompt was given. Achieving a uniform structure for 
information extraction was imperative in conve�ing it into nodes and 
edges within the graph. To accomplish this, we tested multiple prompts 
and iterated them until we got acceptable results. By framing the task as 
that of an investigator tasked with constructing knowledge graphs from 
narratives, we guided the model’s approach. Employing one-shot
prompting involved presenting the model with a sho� story alongside the 
expected output, explicitly stipulating a strict format: first, listing the 
entities it mentioned in the text, followed by detailing the connections 
between them.

Once the entities and the edges between them we established,
transfering this into specific queries to create the knowledge graph 
became imperative. To this end, we constructed a prompt wherein the 
model was tasked with generating Cypher statements based on the 
previous output. We also instructed the model not to create duplicate 
nodes or edges. This output was supervised via LangChain’s
GraphCypherQAChain class, which was responsible for basic checks and 
then executing the queries on our Neo4j graph instance.

For experimentation, we provided a two-paragraph excerpt from the 
Wikipedia plot summary of Charlie Chaplin’s Modern Times as input. We 
tasked both GPT-3.5 and GPT-4 with constructing the graph, at which 
point both models encountered a problem when trying to classify ce�ain 
nodes, which could lead to issues with Neo4j’s labeling, causing it to 
misuse the name, type and label parameters of a node. Despite this, the 
generated graphs covered the story very precisely.

The knowledge graph generated by GPT-3.5 model illustrates the below 
knowledge graph of the given content. Personas in the story are denited 
by blue nodes, object by purple ones and locations by green ones. All the 
impo�ant connections from the story are captured to some extent. 
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However, some nodes are duplicated due to the previously mentioned 
type misconception: for instance, ’police’ is shown both as an object and a 
character, as is ’Ellen’. Additionally, minor hiccups arise with synonyms, 
‘policeman’ and ’police’ are represented as distinct nodes, although this 
could still fit the story logically.

Knowledge graph created by GPT-3.5

The knowledge graph according to GPT-4

GPT-4 created a more streamlined graph compared to its predecessor. It 
successfully eliminated duplicate nodes featuring only one instance each 
of ’police’ and ’Ellen’, but still produced an overlapping ’policeman’.
Notably, GPT-4 generated fewer nodes, offering a condensed
representation of the story with less detail, notably omi�ing the 
brick-throwing incident and the protagonist’s job with the mechanic. 
However, node classifications were more accurate, with ’café’ categorized 
as a location and each persona correctly identified. When creating the 
edges, the GPT-4 model uses richer descriptions like WORK_AS instead of 
IS and the more precise LIVES_IN instead of LOCATED_IN.

“café 
 dancer”

“police”

“lyrics”

“Ellen”

“police”

“road”

“factory” “brick”

“workers”

“waiter”

“shack”

“mechan...”

“Tramp”

“singer” “act”

“cuffs”

“Ellen”

“struggle…”

“policem…”

arrive to

arrest

improvises

pantomimes

lures

flee

walk
down

land
job

read
launch

go on 
strike

leave
with

is

located in

arrest

loses

located in despairs

rescuesis
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Knowledge graph created by GPT-4

Can an LLM actually use a knowledge graph?

Unfo�unately, the models we tested struggled to effectively leverage the 
knowledge graphs. The key issue stemmed from their inability to
comprehend the returned information from graph queries. Despite being 
provided with the schema and existing relations of the graph, both models 
faced difficulties in grasping the data, proving to be an insurmountable 
hurdke for LLMs lacking context.

Basically, while GPT-3.5 could generate functional Cypher queries, it 
encountered difficulty in understanding them. During our experiment, the 
syntax and clauses of ots queries were consistently correct and functional, 
instilling optimism. However, the model ultimately faltered in generalizing 
properly.

For instance, when prompted with “Tramp worked as what?”, it translated 
the relation to “WORK_AS”, whereas the graph represented this
connection as “IS”, leading the model to find no relevant information. At 
times, GPT-3required explicit instructions regarding which nodes or 
relationships to use, resulting in a cumbersome process. On the bright 
side, it could use the basic graph algorithms and, for example, find the 
sho�est path between nodes: 

“Ellen”

“job”
“cuffs”

“road”
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“factory”

“workers”
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“shack”
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MATCH (p:person {name: 'workers'}), (o:object {name: 'café'}), 
path = sho�estPath((p)-[*]-(o)) 
RETURN path

GPT-4 demonstrated notable improvement in understanding the query 
results and grasping the underlying logic of the relations within the 
knowledge graph. It adeptly aligned the verbs and nouns in the question 
with the existing nodes and edges with minimal mistakes in types and 
labels. However, occassional inaccuracies persisted, pa�ially in cases 
where the direction of relationship was confused. Neve�heless, , GPT-4 
displayed great talent in creating Cypher queries, even complicated ones. 
Challenges arose with multiple aggregations or utilizing different
grouping hierarchies, which can be a�ributed to the model’s lack of 
information on the topic.

A reliable and promising application for knowledge graphs, in terms of 
enterprise applicability, lies in leveraging them as “information pointers” in 
a retrieval use case. Constructing the knowledge graph to encompass 
entities and connections from the raw text and linking text chunks to the 
nodes. enables the models to utilize the graph’s architecture and
reference relations between raw text and graph in novel ways, such as 
through embedding vector-based search. This approach eliminates the 
spanning information problems, allowing models to link text pa�s that 
were distant with respect to their embedding vector but have a deep 
connection that is needed for answering.

Overall, despite the current limitations, LLMs leveraging knowledge 
graphs are a promising path for development. There is a lot of untapped 
potential here that, in a few years, could lead to significant pe�ormance 
and reliability gains.

With our final experiment, we aimed to bridge the gap bewteen the digital 
and physical world by creating a solution capable of interacting with 
environment via sensors and actuators. Thus, the Sma� Gardener project 
was conceived — a conversational assistant designed to care for office 
plants. The results detailed below concern to the first phase of the
experiment, which cenetred on software development and included the 
entire LLM-based workflow.

Our target requirements were for the application to: 

Sma� gardener

have access to camera recordings of office plants

recognize the type of plant based on camera recordings

display historical variations in sensor data

pe�orm health checks on plants

identify plants’ condition by referencing them with a database and 
suggest adjustments if needed
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have actuators to water the plants

incorporate voice communication and chat capabilities

Core architecture

User inte�ace

The architecture of the experiment relied heavily on the chaining
technique, with additional tools for extended functionality. We specially 
emphasized on defining the inte�aces of ce�ain tools to make the system 
easy to adapt to use cases other than sma� gardening. LangChain once 
again proved essential in creating the chaining flows on which this entire 
use case is built.

We equipped the GPT-3.5 “brain” with the following tools for the
experiment:

The whole application was bundled up in a containerized Streamlit 
application to make it easy to set up anywhere and it also features a 
web-based inte�ace.

Plant identifier: A small neural network hosted on HuggingFace 
capable of recognizing a predefined set of plants from images. It 
provides classification results, indicating the plant type based on 
the input image.

Internet search: Utilizing DuckDuckGo, this connector enables the 
LLM to search for specific topics, pa�icularly concerning ideal plant 
conditions. To mitigate hallucinations, the LLM restricted from using 
the search tool without knowing the plant type and is directed to 
ask specific questions. Repeated searches are permi�ed to refine 
information.

Database search: Connected to a SQLite database containing 
historical sensor information of plants, including temperature, 
humidity, light conditions, PH level and soil moisture. Synthetic data 
is used during this experimental phase until hardware construction 
is completed.

Condition comparison: Another GPT-3.5 model, tasked with
comparing actual plant conditions of against their ideal
counterpa�s. Based on this comparison, the model make decision 
and offers recommendations.

Plot cha�: A third GPT-3.5 model, equipped with a specific prompt 
to create a Python cha� for the Streamlit application. It identifies 
the data type required for the cha� and leverages the database 
search tool to query the information for the desired plot.
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The Sma� Gardener UI (work in progress)

The web UI provides two fields for input for uploading a photo of a plant 
and raise questions. Since the hardware components are yet to be 
installed, the plants are identified by their pot number, hence it is
imperative to provide pot ID so the right set of data from the database can 
be fetched. We added a default prompt to show an example of a precise 
question.

The initial run by the Sma� Gardener’s was a remarkable experience, 
demonstrating sparks of AGI. Every step taken by the model can be 
tracked with the help of the code tha logs the entire chain-of-thought 
process of the LLM. The LLM model pe�ectly sequenced the exact steps it 
needed to pe�orm the process. 

It took errors in stride: when it made a mistake in its own syntax, it could 
easily rephrase its internal prompts and try again. If a tool didn’t provide 
the required information, the model moved on without inse�ing
hallucinations into the process and simply stated that a piece was
missing. Below is a sample from the LLM’s log:

Can an LLM make a plant happier?
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Thought: I need to identify the plant in pot 10 and then check its 
most recent condition measurements. I can use the plant_identifier 
tool to identify the plant and the DatabaseSearch tool to get the 
most recent measurements

Observation: Philodendron 'Imperial Green'

Action: plant_identifier

Thought: I have identified the plant in pot 10 as Philodendron 
'Imperial Green'. Now I need to use the DatabaseSearch tool to get 
the most recent condition measurements for this plant

Thought: I have the most recent condition measurements for the 
Philodendron 'Imperial Green' in pot 10. Now I need to search the 
internet for the ideal range for each metric and provide suggestions 
for adjustments based on the recorded values

Action Input: Ideal temperature range for Philodendron 'Imperial 
Green'

Action: InternetSearch

Observation: Your Philodendron Imperial Green will thrive in 
temperatures between 75°F and 85°F (23°C to 29°C) ….

Thought: I have found the ideal temperature range for Philodendron 
'Imperial Green' to be between 65°F and 85°F (18°C to 29°C). The 
recorded temperature for pot 10 is 12.094217640511111, which is 
significantly lower than the ideal range. I suggest adjusting the 
temperature to be within the ideal range by providing additional 
heat or moving the plant to a warmer location.

Action Input: Pot number 10

Action: DatabaseSearch

From the log, we could see the first two cycles. The model realizes that it 
first needs to identify the plant from the photo, then get the
corresponding data. It uses the right tool with the expected input formats 
and handles the output as well by understanding the results.

After finding information from the database, the model sta�s to search for 
the ideal conditions — the above example shows the first instance, with 
the model checking the internet for the temperature information. As you 
can see, it was able to retrieve the relevant details — without any
unnecessary noise — from the internet and already provided a basic 
recommendation.

The model takes each measurement — retrieved from the SQL
database — and checks if it can find the right information. Then, it 
constructs the final answer and creates a cha� of the temperature
changes of the last few records of the plant. All of these go back to the UI 
displaying the results.
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Example output from Sma� Gardener

During this process, various issues emerged including the reproducibility, 
handling of dates and resolving differences in categorical or numerical 
values. Despite effo�s to ensure model parameters are consistent, the 
results vary for the same output. Sometimes, the model can find
information for more features, while in other cases, for reasons currently 
unknown, it provides a final output based on limited observations without 
utilizing all the data available. When querying the database, it
occasionally uses the wrong dates and fails to retrieve the most recent 
measurements, even if specifically asked and having the parameters set 
accordingly.

Another hurdle arises when comparing different scaled measurements, 
such as soil moisture information is currently stored in a categorical 
variable (dry, moist and wet) meanwhile, the information found on the 
internet (and scraped by the model) suggests different frequencies for 
watering. This discrepancy hinders LLM to accurately assess watering 
needs. Integrating the hardware components could resolve this issue, 
enhancing the model’s accuracy and enabling it to create informed 
recommendations and take necessary action.

Despite the challenges listed above, our experiment demonstrates the 
significant potential of chaining technology to extend the utility of LLMs.

With increased adaptability, it can streamline various workflows to replace 
manual tasks, including choosing the right neural networks for predictive 
tasks, classification, regression, searching the web, connecting to an 
internal database to retrieve knowledge and more.
 

My suggestions:
The current temperature of the philodendron ‘Imperial Green’ is 19.72 C, which falls within the ideal
range of 16-30 C. Therefore, the temperature is okay.

The current humidity level is 0.49 (assuming this is a relative humidity value is decinal form, i.e.,
49%), which is considered low for a “moderate” humidity level typically required by philodendron
‘Imperial Green’. It is suggested to increase the humidity level, perhaps by using a humidifier or
placing the plant on tray of water.

The soil condition is currently “dry”, while the ideal condition is “well-draining, water when top half
feels dry”. This suggests that the plant may need watering. It is suggested to water the plant until the
top half of the soil feels moist.

The light condition is given as a numerical value of 1723.28, while the ideal condition is described
qualitatively as “bright, indirect”. Without a clear way to conve� the numerical value to a qualitative
description, it’s not possible to definitively say whether the light condition is okay or not. however, if
the numerical value represents light intensity in lux, then it might be too high as “bright, indirect”
light typically corresponds to a lower lux value. it is suggested to adjust the light source or use a
shade to reduce the light intensity.
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This high level of adaptability for LLMs opens a new perspective for 
application development, making it possible to, for example, automate the 
dashboard creation process. Tools such as anomaly detection modules, 
packages to create cha�s, database connections to retrieve the data for 
the cha�s and internet connectivity for competitor analysis will enable 
users to define their needs in natural language and leave it to the LLM to 
orchestrate the entire process, from creating the underlying logic to 
connecting the individual pieces and, finally, provide quick and effective 
output.
 

In the near future, the trajectory of LLM will likely shape their role as 
primary source of competitive advantage for enterprises. The technology, 
along with the systems built around it, is poised to reach new heights. As 
the above experiments demonstrated, most of the building blocks are 
already firmly in place and with the current pace of development and 
adoption, the early growing pains will likely prove fleeting. Below, we 
outline key takeaways, emphasizing that large language models have 
immense potential to simplify and elevate enterprise use cases, with even 
the tasks that are currently beyond leading models’ abilities appearing 
well within reach in the foreseeable future.
 

OpenAI’s models are currently the most powe�ul LLMs, demonstrating 
unmatched power and consistency when configured specific use cases. 
Notable, they excel in delivering precise, relevant responses while
minimizing unnecessary noise. Their remarkable understanding of user 
intents also sets them apa� from open-source models. Beyond their 
reduced frequency of hallucinations, their effectiveness in high-stakes 
communication is even underscored by their improved capability to 
express unce�ainty by simply saying "I don't know" or "I am not sure". 
 
As a result, when integrating LLMs into a general use case, our current 
recommendation is to go with one of OpenAI’s models, while the 
open-source route only becomes preferable when there is a highly
specific task at hand that necessitates a feature or characteristic found 
only in an open-source model.
 
On a more critical note, it also became apparent during our experiments 
that maintaining an OpenAI-based end-to-end solution may prove 
prohibitively expensive and their fine-tuning system for customization also 
has considerable limitations.
 

Final thoughts

OpenAI’s models are the ones to beat 
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The cu�ing edge is costly

Extending on the previous point, cu�ing edge technology comes at a cost. 
LLMs are inherently resource-intensive. Even for inte�ace alone,
substantial GPU RAM (often exceeding 100 gigabyte) is necessary, making 
hosting or using them locally on GPU cluster expensive and complex. 
While open-source models themselves may be free, the associated 
infrastructure costs for hosting locally or in the cloud much be
considered.

On the bright side, the ability to use models in overall less resource-heavy 
systems is on the horizon, with intensive research effo�s directed at fi�ing 
the inference of the big models into a simple environment using
quantization techniques to control costs and other resource demands. 
However, there are already great hosting options, notably from Azure and 
HuggingFace services.

Technologically, LLMs have reached a level of maturity that positions them 
favorably for demanding, sensitive enterprise use cases with ongoing 
developments reinforcing this suitability. Their general knowledge has 
been extended to where there are barely any topics about which they 
don’t have at least some usable information. These should also get 
covered soon, with the development into novel methods to improve LLMs’ 
knowledge, like the plugin system or defining built-in functions. 

LLMs display an exceptional aptitude for sequential thinking and creating 
chain-of-thoughts cycles, enabling them to navigate complex scenarios 
effectively, despite lacking real reasoning capabilities and interpretability 
for humans due to the multitude of problems and solutions they handle 
simultaneously.

Regarding open-source models, context window size remains a significant 
limitation, with GPT-4’s 32K context size dwa�s that of the 
LLaMa-2-based HuggingFace benchmark leaders, like the Platypus2, 
whose context length is 4096 tokens — but there are reassuring
developments in this field. Innovations like Anthropic's Claude model, 
achieving a context length of 100K tokens, show promise for greatly 
expanding these boundaries.

The future is now — and more so tomorrow 
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