
Enterprise perspectives
on large language models

Enterprise perspectives on large language models 2

Historical context

Businesses are eagerly adapting Large Language Models (LLMs) to
streamline operations, improve resilience and build competitive
advantage through task automation and extension. However, navigating
the complexities of LLM implementation at scale poses challenges with
evolving technology and many variables in enterprise implementations. To
maximize LLM benefits, enterprises need not only technical expe�ise to
construct and implement the models, but to get value from them quickly,
they must adopt a realistic outlook on where these models can pe�orm at
a consistently high level against potential use cases.

Our team of data scientists recently conducted a series of in-depth
experiments with LLMs aimed at deriving mature, actionable and practical
insights to assist large organizations in se�ing and surpassing accurate
expectations regarding LLMs. The insights illuminate key strengths,
limitations and main resource demands of prominent models offering a
guidance on their suitability for various enterprise use cases.

This whitepaper begins by establishing the context necessary for
developing a working understanding of LLMs, followed by an exploration
of the tools, techniques and methodologies employed in our experiments
and applicable in enterprise-grade use cases. Finally, it presents the
results and draws longer-term conclusions from them.

To understand the current AI boom, we need trace back to 2017 and the
debut of Transformers by Google researchers. These models marked a
breakthrough by processing sentences, rather than relying on sequential
understanding like previous models. This parallel processing capability,
enabled by a�ention mechanism which provides information about the
relationships between the words of the text, not only boosts efficiency but
also allows models to ‘remember’ and consider earlier sections of the text
while generating output.

Following the popularity of Transformers and a�ention mechanisms,
OpenAI launched their GPT series, which prioritized advanced weighing of
words and were specifically trained to be best at predicting the next token
only.

Some researchers suggest that the latest ireration in the series, GPT-4,
released in 2023, displays sparks of A�ificial General Intelligence (AGI) due
to its broad knowledge across extensive range of topics, human-like
cognitive capabilities and ability to handle not only text but visual input as
well.

3Enterprise perspectives on large language models

Defining LLMs
LLMs, like GPT-3.5 and GPT-4 boast an exceptionally high number of
parameters, trained on petabytes of textual data from the internet.
Parameters are like neurons in the brain, essentially enabling GPT models
to simulate human-like cognition. For reference, an average human brain
has approximately 80-100 billion neurons, while ChatGPT built on GPT-3.5,
features around 175 billion parameters, while GPT-4 might reach 1 trillion.
This illustrates why LLMs excels at generative tasks such as summarizing
documents, writing code and synthesizing knowledge as increasingly
adaptive assistants that leverage conversational inte�aces, albeit at a
high resource cost of training, inference and maintenance, notably in
terms of computational power.

The leading LLM service is currently offered by OpenAI, offering multiple
models through an API with diverse possibilities such as embeddings,
completions, moderations and more alongside Azure integration.
Promising alternatives to OpenAI’s offerings are constantly emerging,
many of which are open source, greatly expanding customization
oppo�unities.

See the following table for a high-level comparison of closed-dev and
open-source LLMs:

Note -the difference between a model from an application: GPT3.5, GPT-4
and LLaMa (LLama is a family of autoregressive large language models,
released by Meta AI sta�ing in February 2023.) are models, while ChatGPT
is a chatbot application built on top of GPT3.5 and GPT-4. Other promi-
nent applications include GitHub Copilot, a code assistant and Microsoft
Bing, both of which use a version of GPT.

API calls - closed-dev
(e.g. GPT-3.5/4)

Local hosting - open-source
(e.g. Dolly, LLaMa, Alpaca)

Advantage

Easy setup

Low latency

Cu�ing-edge models
are available

Greater selection
of models

Independent
Lower inference cost

Disadvantage

Higher long-term
costs
Dependent on third
pa�y API

Complex and costly
setup
Weaker models

The main advantages and drawbacks of closed-dev and open-source LLMs

4Enterprise perspectives on large language models

The experiments
The experiments conducted for this paper aimed to reveal insights
regarding key pe�ormance considerations, such as identifying most
suitable model or service for specific tasks and understanding associated
costs and resource needs. To provide a full picture, the discussion will
delineate various considerations across different experiments,
showcasing and comparing the capabilities and limitations of LLMs across
different tasks.

Database assistants

Knowledge graphs with LLMs

In our first experiment, we focused on an information retrieval use case
centered on searching directly inside databases instead of focusing on
embeddings. We primarily utilized OpenAI models but had also auditioned
open-source alternatives. Beyond examining the querying capabilities, this
experiment highlighted the key differences between the models.

Our database based on PostgreSQL comprised multiple tables. SQL being
a widely used language in most companies, have these types of
databases, we found it intriguing to explore how an LLM could answer
questions about such a data source without the need for manually writing
SQL queries.

The second use case combines knowledge graphs with LLMs to unlock
multiple benefits, such as greatly mitigating the hallucinations and
propensity for factual incorrectness that have limited the
enterprise-grade adaptability of these models. While LLMs’ possess
implicit knowledge within their parameters, inaccessible and
unexplainable to humans, their training on a general corpus limits their
ability to fully adapt to specific domains unassisted and have a knowledge
cutoff, renders them unable to answer questions beyond their training
data. Their output can also contain hallucinations and other kinds of
factually incorrect answers. Knowledge graphs hold promise in enhancing
the effectiveness of LLMs by providing structured knowledge
representation. However, building an adequate knowledge graph is
complex and lacks established best practices.

Therefore, the experiment also involved leveraging LLMs to assemble lists
of nodes and edges and, ultimately, creating a knowledge graph from raw
textual data. With the newly established graph, we delved into information
retrieval methodology and corner cases in depth. Given embeddings are
commonly used to tackle most of the above-mentioned problems, we
compared the graph-based and embedding-based solutions across
various cases to see how they stack up and whether a graph can really
solve the limited information spanning that’s typical of embeddings.

Enterprise perspectives on large language models 5

LLMs with tools

OpenAI services as the state of the a�

Price

The third use case entails a sma� gardener assistant designed to
showcase the power of chaining using LangChain. For this experiment,
OpenAI’s GPT-3.5 model serves as the brain and equipped with tools like
image recognition, internet search and database querying. The goal is to
assess the health of plants and offer care suggestions if any issues arise,
focusing on developing a complex workflow with chaining and employing
‘chain-of-thought’ thought-action-observation cycles.

Models and other tools
This section discusses in detail the toolset and methodologies that we
auditioned for the abovementioned enterprise-grade LLM experiments.

When embarking on serious experimentation with LLMs, the logical
sta�ing point is to utilize a tool from the developers of ChatGPT. OpenAI
boasts the most mature product currently available, renowned for its
response quality and hallucination reduction, establishing itself a primary
innovator in the field. Naturally, we sought to asce�ain if these
characteristics translate to generally superior suitability for business use
cases.

Given that ChatGPT is already a comprehensive chatbot application, the
underlying model serves as the core building block for the experiment.
This was made feasible through the OpenAI API, offering access to various
versions of the models, including GPT-4, the latest and most powe�ul
iteration and GPT-3.5, the model underpinning first iteration of ChatGPT.
One benefit of using the API is its provision of access to model
configuration parameters. While chatGPT only pass dialogue text, API
enables manipulation of parameters such as temperature, governing the
randomness of the model output and role, allowing contextual se�ing for
the agent’s operate. These configuration options cater to the needs of the
enterprise environment and the intended use cases for deploying the
models.

When evaluating pricing options, two primary main factors come into play:
context window size and the underlying model. The context window
determines the maximum number of tokens that can be processed by the
models at once, essentially defining the maximum amount of information
they can handle. OpenAI’s largest context window size currently available
for GPT-4 is 32k tokens, roughly equivalent to the content of 40 A4-size
pages. Leveraging the API with this configuration costs $0.12 per 1000
tokens, which aligns with the content of the A4 page. While seemingly
affordable initially, these costs can accumulates rapidly, pa�icularly for
enterprises dealing with a large user base.

Enterprise perspectives on large language models 6

Older models such as GPT-3.5, boasting a 16k context window size, come
at a mere $0.004 per 1000 tokens, representing a significant cost
reduction. However, this reduction in cost accompanies a trade off in
power; earlier models are more susceptible to errors in reasoning and
exhibit higher levels of bias. Neve�heless, these characteristics may still
render them suitable for applications with narrower scope and
functionality.

A variety of open-source LLMs, including LLaMa, Alpaca, Vicuna, Falcon
and Dolly, present alternatives to OpenAI’s offerings, differing mainly in
model size. While GPT-4 boasts around one trillion parameters, leading
HuggingFace’s LLaMa-2 adaptations features 70 billion parameters.
Despite their smaller size, these models are capable of human-like
conversation, albeit less refinement compared to ChatGPT. However, their
smaller context window, such as LLaMa’s 4K compared to GPT-3.5 Turbo’s
16K, limits their ability to handle large amounts of information at once.

One advantage of open-source models is the ability to host them locally,
eliminating reliance in third-pa�y servers and APIs. However, managing
the infrastructure falls on the user, incurring additional setup costs. Cloud
services can help mitigate this to a degree by leveraging a cloud service,
but defining the architecture will still be the user’s task.

Fu�hermore, open-source models empowers users to train them on a
custom dataset, unlike OpenAI offerings that mainly suppo� fine-tuning.
However, their models are highly generic, so these options are only ever
relevant for specific tasks. The downside of training your own LLMs is that
it necessitates significantly more resources, for instance, training a model
is much more challenging than using it for inferencing. Our suggestion
would be staying away from this option for business use cases and leaving
it to research teams unless the use case necessitates specialized data
management, for example due to the sensitivity of the data.

Moreover, open-source models may pose a significant limitation in
business application: many are only available under non-commercial
licenses. It’s essential to examine these license terms before adopting
these models. For example, the LLaMa model, published by Facebook
Research, restricts commercial use, affecting all derivatives based on it.
However, the new LLaMa-2 model operates a commercial-friendly license.
In contrast, other prominent fully open models like Falcon, Dolly and
OpenAssistant are all suitable for commercial purposes.

Open-source alternatives

Model chaining as a new
way of orchestration
Language models are, to a degree, single-task-specific. This task can have
a narrow focus, such as code generation or broader utility such as
maintaining a humanlike dialogue with the user. To enable models to work
together in solving complex tasks, we use so-called “model chaining”
frameworks.

Enterprise perspectives on large language models 7

In these frameworks, one language model acts as an agent: it breaks
down a complex task into simple subtasks and delegates them to
tools — which may also be language models — and continues this in an
iterative loop until the main task is solved. This helps to create agents that
have humanlike problem-solving capabilities, extended or limited by the
tools with which they are equipped. Such tools typically include web
search, SQL database connections, code generators, etc.

LangChain is a versatile LLM chaining tool suppo�s several open-source
models alongside OpenAI’s GPT models. It comes with a comprehensive
set of integrated tools, including the Google API for web search, an SQL
wrapper for database queries and various classes for streamlined API calls
that handle errors efficiently. It even facilitates the creation of custom
tools and agents boasting extensive documentation tutorials and a
suppo�ive community to help users at all levels of expe�ise.

LangChain

HayStack

HayStack specializes in creating both general conversational agents and
those tailored for answering questions about specific documents. With
HayStack creating memory-equipped chatbots requires minimal code,
eliminating the need for defining custom classes. However, one major
downside of Haystack is that its less flexible tooling compared to
LangChain and currently exclusive suppo�s models from OpenAI.

JARVIS

JARVIS serves as a model chaining agent that seamlessly integrates
language models with HuggingFace machine learning models. Users can
effo�lessly define task and provide a corresponding inputs allowing
JARVIS to automatically invoke appropriate model. For example, JARVIS
can identify the breed of dog is in an image, without requiring explicit
coding for each task. Unfo�unately, JARVIS currently has no integration
with other tools such as web search.

Experiment processes
and results
This section delve into the key takeaways from the three experiments and
what they might mean for businesses. For each experiment, we will provide
an overview of the setup and the various phases before evaluating the
results.

8Enterprise perspectives on large language models

Database assistant

The setup

To review, this experiment had two main goals:

Create an information retrieval system that shows the SQL querying
capabilities of LLMs.

See how various LLMs — open-source and leading OpenAI models
— stack up in various aspects.

To make measurements that would enable us to get usable insights from
the experiments, we creating an SQL database was imperative. Opting a
publicly available dataset featuring multiple tables of dummy HR data for
a fictional small business, we included information such as employees’
personal data, their job titles and more. This below image depicts the
database schema with the connections:

The database schema used in the database assistant experiment

E43

Once we initialized this database in a PostgreSQL environment, we
ensured its accessibility through secure API facilitating seamless
interactions from code.

*job_id
 job_title
 min_salary
 max_salary

jobs

*employee_id
first_name
last_name
email
phone_number
hire_date
job_id
salary
manager_id
depa�ment_id

employees

*depa�ment_id
 depa�ment_name
 location_id

depa�ments * location_id
 street_adress
 postal_code
 city
 state_province

locations

9Enterprise perspectives on large language models

tour subsequent task involved scouting for candidate LLMs. We aimed to
identify models with distinct advantages while adhering to two
constraints: they needed to be relatively small and/or easily integrable.
Our rationale behind this was that, if this use case were to go into
production, the domain would be small enough that it would have to run
in a limited-resource environment and avoid a high setup cost. The next
table lists the models used:

The models used in the database assistant experiment

The subsequent task involved constructing questions or prompts for the
model, gradually increasing in difficulty. Initially, we formulated
straightforward questions that did not necessitate joining tables for
answering. Subsequently, we designed questions still recognized as easy
but incorporated synonyms. To tackle the most difficult questions, the
model had to decipher not only the rephrasing but also, for example,
joining and other advanced SQL techniques as well.

To facilitate the testing environment, we crafted a versatile testing script
capable of adapting to various model inte�aces. When using OpenAI’s
models proved uncomplicated for the open-source models, HuggingFace
provided a coding framework ensuring unified and painless integration.
When required, we used a GPU, typically opting for a smaller one like a
Tesla T4.

Name Owner Parameters Context
size

License Open/
closed

Dolly-v2
-3B

Databricks 2.8 billion 2K MIT (commercial
use)

Open-source

GPT4All-13B-
SNOOZY
(GGML)

Nomic 13 billion 2K Apache-2
(commercial use)

Closed

LLaMa-2-7B Meta 7 billion 4K Commercial
use

Closed

LLaMa-2-13B Meta 13 billion 4K Commercial
use

Closed

GPT-3.5 OpenAI 175 billion 8K Commercial
use

Closed

GPT-4 Unknown
(estimated 1.7

trillion)

12K Commercial
use

ClosedOpenAI

The prompt and context

Every model received identical structured prompts and context. They were
tasked with assuming the identity of a helpful assistant that transforms
questions into SQL queries. Additionally, we furnished them with the
database schema to acquaint them with the available fields for answering
the user’s questions.

Enterprise perspectives on large language models 10

OpenAI takes the lead with ease

The OpenAI models excelled in every test , effo�lessly executing basic
SQL statements and adeptly rephrasing verbs and nouns from the
question to the SQL query based on the schema. They demonstrated
exceptional proficiency in handling keys and joining statements. While
their SQL results might not always have produced the best-pe�ormance,
they consistently provided a reliable answer every time.

Interestingly, there was no significant pe�ormance gap between GPT-3.5
and GPT-4, indicating that the older GPT is also comfo�ably capable of
solving these kinds of problems. Not only did the models produce good
results, but they were also stable, reproducible and very fast using OpenAI
APIs.

Lightweight, with pe�ormance to match: Dolly

Dolly-V2, the smallest model pa�icipating in the experiment, struggled
the most, failing most of the tests. The basic knowledge of SQL present in
the model facilitated it to generate a correct functional query fo
questions such as, “How many employees are there?” or “How many
employees have the last name King?”. It could even list the names when
asked about the employees who joined before 1990, demonstrating
decent functionality for its size.

However, the hallucinations and heavily ’generative a�itude’, repeatedly
erring on the side of linguistic, rather than substantive appropriateness
resulted in a mixed picture overall. For example, when asked “How long
has Alexander Hunold been working at the company?” or “What is the role
of Alexander Hunold?”, it simply generated a random number for the
answer. So, for every complex query in the result was either a hallucination
or syntax errors which stemmed from the misuse of the keys for joining
and misunderstanding the questions.

Interestingly, Dolly results were sometimes hard to reproduce and the
model has a strangely oscillating pe�ormance, which was highlighted
when asked “List each depa�ment with the number of employees working
for that depa�ment. Return the depa�ment name and the headcount.”
Being a relatively complex statement, we expected the model to fail to
provide an adequate output, only to be provided the following SQL query:

However, a glance at the context sizes foreshadowed a major difference
among the models: Dolly and GPT4All models were constrained to a 2K
context length, limiting their ability to handle larger datasets, while
LLaMa-2 boasted a 4K context length and OpenAI comes out on top with
its sizes in the 8K-32K range. Our example database is considered tiny but,
for reference, our prompts cost an average of 200 tokens, not including
the question.

Enterprise perspectives on large language models 11

SELECT d.depa�ment_name, COUNT(e.employee_id)
FROM employees e
JOIN jobs j ON j.job_id = e.job_id
JOIN depa�ments d ON d.depa�ment_id = j.depa�ment_id
JOIN locations l ON l.location_id = d.depa�ment_id
GROUP BY d.depa�ment_name

Misuse of keys, joining by depa�ments.job_id (non-existent)

IT is in WHERE clause with LIKE searching in jobs.job_title (not using
the “depa�ments” table)

This syntax was very close to the ideal answer since it only contains two
mistakes - the key is wrong in the second JOIN clause since only the
employees (e in the query) table has depa�ment_id and the jobs table
does not. Fu�hermore, there is a similar issue with the third JOIN, as it
should map l.location_id with d.location_id and not depa�ment_id. If
corrected, this query would produce the desired output.

Beginning with the positive, despite its larger size (13 billion parameters vs.
Dolly’s 2.8) GPT4All’s resource demand was comparable to Dolly’s.
However, despite being able to pe�orm basic tasks like counting rows with
small WHERE clauses or filtering employees based on their hire dates, it
kept making syntactical mistakes. It was unable to comprehend the
parameter we provided in the prompt. For instance, when asked to count
employees who have the le�er t in their name, the model searched for the
capital le�er T and returned only a subset of the correct set. Fu�hermore,
it was unable to utilize the right schema and employed fields from the
overall schema with the wrong table. It also used clauses which were
unnecessary frequently multiple times, adding a “WHERE employee_id =
‘1234567890’ for no reason at all or tried to work with the manager_id
field even if it wasn't mentioned at all.

In case of LLaMa-2, we emphasized on the smallest version, LLaMa-2-7B.
LLaMa-2 is a new competitor in the market building on the original LLaMa
by Meta. The key improvements in this tool are a bigger context size, with
4K tokens and some pe�ormance gains. It has three versions,
differentiated by the number of parameters: the 7-billion “7B”, 13-billion
“13B” and 70-billion “70B.”

The pe�ormance of LLaMa-2-7B was great, when medium level questions
or prompts were aske. It was able to create basic SQL statements with
WHERE, COUNT, LIKE, GROUP BY and DISTINCT clauses. However, it had
some persistent problems, including misuse of the keys at joining and
creating syntactically correct but functionally incorrect statements. For
example, for the task of “Who has the max salary in IT and how much
bigger is their salary compared to the minimum IT salary? Return the first
name, last name and the difference as a number”, it encountered the
following recurring errors:

Well-optimized but inaccurate: GPT4All

Meta’s Midranger: LLaMa-2

Enterprise perspectives on large language models 12

IT filtering is completely ignored

Wrong calculation of differences (calculated against each
employee’s current salary, so the results were always zero)

Forgot GROUP BY clause

Random semicolons in the middle of statements

Using Oracle SQL statements, not PostgreSQL

If we extended the conversation into a chat and provided feedback on the
error, LLaMa successfully resolved some issues, substituting the Oracle
statement with another function that works in Postgre as well, including
the overlooked GROUP BY and filtering for the IT depa�ment. However, in
some cases like the above-mentioned example, it struggled to figure out
the solution despite these li�le nudges.

We evaluated most of the questions against the bigger version,
LLaMa-2-13B which unfo�unately did not produce much improvement. It
handle cases similarly to LLaMa-2-7B and encountered the same errors in
the identical scenarios. Fu�hermore, the reasons were similar, with
occasional failures in creating the appropriate JOIN clause and
overlooking specifical depa�ment filtere, for example. Interestingly, in
ce�ain cases, the 13-billion-parameter version generated specific IDs that
had nothing to do with the questions.

Both LLaMa models were accessed vua HuggingFace services. Responses
remained consistent and relatively prompt, although the bigger model
usually took twice as long to produce an answer as the seven
billion-parameter version. Additionally, the pe�ormance of the model
enhanced when we kept the chat history limited, ideally maintaining one
query at a time.

As a reminder, this experiment aimed to gauge whether knowledge graphs
could offer a solution to overcome lingering inherent limitations of LLMs,
such as lack of explainability, knowledge cutoffs, training and fine-tuning
problems due to immense resource requirments, questionable reasoning
capabilities, hallucinations and factual inconsistency.

While knowledge graphs show promise and are subject of intense
ongoing research, they are nit widely deployed at businesses. Building a
versatile knowledge graph is an intricate task and best practices are yet to
be established. Consequently, our first notable takeaway on the subject is
that since knowledge graphs are uncommon, LLMs have limited
knowledge of them. Although the models understand the concept,
relevant tools and use cases, Their pe�ormance may not match that more
established domains like SQL use cases. Moreover. the challenge of
fine-tuning with knowledge graphs arises from the disparity between
LLMs are based on prompt-completion pairs the nodes and edges
structure of a graph, which makes fine-tuning an alignment between
these both essential and challenging.

Knowledge graph

Enterprise perspectives on large language models 13

Preparations

Can an LLM build a knowledge graph?

The knowledge graph according to GPT-3.5

As the first step, we endeavoured to construct a knowledge graph with an
LLM. Given raw textual data and some prompt engineering, the model
successfully managed to build a usable graph based on the provided
information. Subsequently, we examined how well it could use the graph
to extend its prompts with relevant information. For this experiment, we
used Neo4j as the chosen graph database management system. Neo4j
offers hosted databases with secure API connections. It employs Cypher
for querying, a recent addition to the LangChain framework, which
encompasees graph-querying modules with syntax-checking and
automated direct connection to sources. Throughiut this experiment, we
extensively utilized OpenAI, since their models had consistently displayed
the best pe�ormance. Given the complexity inherent in building a
knowledge graph, we deemed it unnecessary to subject other models to
additional hurdles.

The OpenAI models demonstrated the ability to generate knowledge
graphs once the right prompt was given. Achieving a uniform structure for
information extraction was imperative in conve�ing it into nodes and
edges within the graph. To accomplish this, we tested multiple prompts
and iterated them until we got acceptable results. By framing the task as
that of an investigator tasked with constructing knowledge graphs from
narratives, we guided the model’s approach. Employing one-shot
prompting involved presenting the model with a sho� story alongside the
expected output, explicitly stipulating a strict format: first, listing the
entities it mentioned in the text, followed by detailing the connections
between them.

Once the entities and the edges between them we established,
transfering this into specific queries to create the knowledge graph
became imperative. To this end, we constructed a prompt wherein the
model was tasked with generating Cypher statements based on the
previous output. We also instructed the model not to create duplicate
nodes or edges. This output was supervised via LangChain’s
GraphCypherQAChain class, which was responsible for basic checks and
then executing the queries on our Neo4j graph instance.

For experimentation, we provided a two-paragraph excerpt from the
Wikipedia plot summary of Charlie Chaplin’s Modern Times as input. We
tasked both GPT-3.5 and GPT-4 with constructing the graph, at which
point both models encountered a problem when trying to classify ce�ain
nodes, which could lead to issues with Neo4j’s labeling, causing it to
misuse the name, type and label parameters of a node. Despite this, the
generated graphs covered the story very precisely.

The knowledge graph generated by GPT-3.5 model illustrates the below
knowledge graph of the given content. Personas in the story are denited
by blue nodes, object by purple ones and locations by green ones. All the
impo�ant connections from the story are captured to some extent.

Enterprise perspectives on large language models 14

However, some nodes are duplicated due to the previously mentioned
type misconception: for instance, ’police’ is shown both as an object and a
character, as is ’Ellen’. Additionally, minor hiccups arise with synonyms,
‘policeman’ and ’police’ are represented as distinct nodes, although this
could still fit the story logically.

Knowledge graph created by GPT-3.5

The knowledge graph according to GPT-4

GPT-4 created a more streamlined graph compared to its predecessor. It
successfully eliminated duplicate nodes featuring only one instance each
of ’police’ and ’Ellen’, but still produced an overlapping ’policeman’.
Notably, GPT-4 generated fewer nodes, offering a condensed
representation of the story with less detail, notably omi�ing the
brick-throwing incident and the protagonist’s job with the mechanic.
However, node classifications were more accurate, with ’café’ categorized
as a location and each persona correctly identified. When creating the
edges, the GPT-4 model uses richer descriptions like WORK_AS instead of
IS and the more precise LIVES_IN instead of LOCATED_IN.

“café
 dancer”

“police”

“lyrics”

“Ellen”

“police”

“road”

“factory” “brick”

“workers”

“waiter”

“shack”

“mechan...”

“Tramp”

“singer” “act”

“cuffs”

“Ellen”

“struggle…”

“policem…”

arrive to

arrest

improvises

pantomimes

lures

flee

walk
down

land
job

read
launch

go on
strike

leave
with

is

located in

arrest

loses

located in despairs

rescuesis

Enterprise perspectives on large language models 15

Knowledge graph created by GPT-4

Can an LLM actually use a knowledge graph?

Unfo�unately, the models we tested struggled to effectively leverage the
knowledge graphs. The key issue stemmed from their inability to
comprehend the returned information from graph queries. Despite being
provided with the schema and existing relations of the graph, both models
faced difficulties in grasping the data, proving to be an insurmountable
hurdke for LLMs lacking context.

Basically, while GPT-3.5 could generate functional Cypher queries, it
encountered difficulty in understanding them. During our experiment, the
syntax and clauses of ots queries were consistently correct and functional,
instilling optimism. However, the model ultimately faltered in generalizing
properly.

For instance, when prompted with “Tramp worked as what?”, it translated
the relation to “WORK_AS”, whereas the graph represented this
connection as “IS”, leading the model to find no relevant information. At
times, GPT-3required explicit instructions regarding which nodes or
relationships to use, resulting in a cumbersome process. On the bright
side, it could use the basic graph algorithms and, for example, find the
sho�est path between nodes:

“Ellen”

“job”
“cuffs”

“road”

“song”

“factory”

“workers”

“waiter”

“shack”

“café”

“singer”

“policem…”
walk on

walk on
Reasure

Lives_in

Lose

Lands

Rele
as

ed

A
rr

iv
e

Get_job

Flee

Fl
ee

Takes to

W
orks_at

Arrested by

W
or

k_
as

Work_at

Arrested_by

Launches_at

Tell_to_leave

Reads_about Go
_o

n_
st

rik
e

Work_asIm
pr

ov
is

e

“Tramp”

“police”

Enterprise perspectives on large language models 16

MATCH (p:person {name: 'workers'}), (o:object {name: 'café'}),
path = sho�estPath((p)-[*]-(o))
RETURN path

GPT-4 demonstrated notable improvement in understanding the query
results and grasping the underlying logic of the relations within the
knowledge graph. It adeptly aligned the verbs and nouns in the question
with the existing nodes and edges with minimal mistakes in types and
labels. However, occassional inaccuracies persisted, pa�ially in cases
where the direction of relationship was confused. Neve�heless, , GPT-4
displayed great talent in creating Cypher queries, even complicated ones.
Challenges arose with multiple aggregations or utilizing different
grouping hierarchies, which can be a�ributed to the model’s lack of
information on the topic.

A reliable and promising application for knowledge graphs, in terms of
enterprise applicability, lies in leveraging them as “information pointers” in
a retrieval use case. Constructing the knowledge graph to encompass
entities and connections from the raw text and linking text chunks to the
nodes. enables the models to utilize the graph’s architecture and
reference relations between raw text and graph in novel ways, such as
through embedding vector-based search. This approach eliminates the
spanning information problems, allowing models to link text pa�s that
were distant with respect to their embedding vector but have a deep
connection that is needed for answering.

Overall, despite the current limitations, LLMs leveraging knowledge
graphs are a promising path for development. There is a lot of untapped
potential here that, in a few years, could lead to significant pe�ormance
and reliability gains.

With our final experiment, we aimed to bridge the gap bewteen the digital
and physical world by creating a solution capable of interacting with
environment via sensors and actuators. Thus, the Sma� Gardener project
was conceived — a conversational assistant designed to care for office
plants. The results detailed below concern to the first phase of the
experiment, which cenetred on software development and included the
entire LLM-based workflow.

Our target requirements were for the application to:

Sma� gardener

have access to camera recordings of office plants

recognize the type of plant based on camera recordings

display historical variations in sensor data

pe�orm health checks on plants

identify plants’ condition by referencing them with a database and
suggest adjustments if needed

Enterprise perspectives on large language models 17

have actuators to water the plants

incorporate voice communication and chat capabilities

Core architecture

User inte�ace

The architecture of the experiment relied heavily on the chaining
technique, with additional tools for extended functionality. We specially
emphasized on defining the inte�aces of ce�ain tools to make the system
easy to adapt to use cases other than sma� gardening. LangChain once
again proved essential in creating the chaining flows on which this entire
use case is built.

We equipped the GPT-3.5 “brain” with the following tools for the
experiment:

The whole application was bundled up in a containerized Streamlit
application to make it easy to set up anywhere and it also features a
web-based inte�ace.

Plant identifier: A small neural network hosted on HuggingFace
capable of recognizing a predefined set of plants from images. It
provides classification results, indicating the plant type based on
the input image.

Internet search: Utilizing DuckDuckGo, this connector enables the
LLM to search for specific topics, pa�icularly concerning ideal plant
conditions. To mitigate hallucinations, the LLM restricted from using
the search tool without knowing the plant type and is directed to
ask specific questions. Repeated searches are permi�ed to refine
information.

Database search: Connected to a SQLite database containing
historical sensor information of plants, including temperature,
humidity, light conditions, PH level and soil moisture. Synthetic data
is used during this experimental phase until hardware construction
is completed.

Condition comparison: Another GPT-3.5 model, tasked with
comparing actual plant conditions of against their ideal
counterpa�s. Based on this comparison, the model make decision
and offers recommendations.

Plot cha�: A third GPT-3.5 model, equipped with a specific prompt
to create a Python cha� for the Streamlit application. It identifies
the data type required for the cha� and leverages the database
search tool to query the information for the desired plot.

Enterprise perspectives on large language models 18

The Sma� Gardener UI (work in progress)

The web UI provides two fields for input for uploading a photo of a plant
and raise questions. Since the hardware components are yet to be
installed, the plants are identified by their pot number, hence it is
imperative to provide pot ID so the right set of data from the database can
be fetched. We added a default prompt to show an example of a precise
question.

The initial run by the Sma� Gardener’s was a remarkable experience,
demonstrating sparks of AGI. Every step taken by the model can be
tracked with the help of the code tha logs the entire chain-of-thought
process of the LLM. The LLM model pe�ectly sequenced the exact steps it
needed to pe�orm the process.

It took errors in stride: when it made a mistake in its own syntax, it could
easily rephrase its internal prompts and try again. If a tool didn’t provide
the required information, the model moved on without inse�ing
hallucinations into the process and simply stated that a piece was
missing. Below is a sample from the LLM’s log:

Can an LLM make a plant happier?

Enterprise perspectives on large language models 19

Thought: I need to identify the plant in pot 10 and then check its
most recent condition measurements. I can use the plant_identifier
tool to identify the plant and the DatabaseSearch tool to get the
most recent measurements

Observation: Philodendron 'Imperial Green'

Action: plant_identifier

Thought: I have identified the plant in pot 10 as Philodendron
'Imperial Green'. Now I need to use the DatabaseSearch tool to get
the most recent condition measurements for this plant

Thought: I have the most recent condition measurements for the
Philodendron 'Imperial Green' in pot 10. Now I need to search the
internet for the ideal range for each metric and provide suggestions
for adjustments based on the recorded values

Action Input: Ideal temperature range for Philodendron 'Imperial
Green'

Action: InternetSearch

Observation: Your Philodendron Imperial Green will thrive in
temperatures between 75°F and 85°F (23°C to 29°C) ….

Thought: I have found the ideal temperature range for Philodendron
'Imperial Green' to be between 65°F and 85°F (18°C to 29°C). The
recorded temperature for pot 10 is 12.094217640511111, which is
significantly lower than the ideal range. I suggest adjusting the
temperature to be within the ideal range by providing additional
heat or moving the plant to a warmer location.

Action Input: Pot number 10

Action: DatabaseSearch

From the log, we could see the first two cycles. The model realizes that it
first needs to identify the plant from the photo, then get the
corresponding data. It uses the right tool with the expected input formats
and handles the output as well by understanding the results.

After finding information from the database, the model sta�s to search for
the ideal conditions — the above example shows the first instance, with
the model checking the internet for the temperature information. As you
can see, it was able to retrieve the relevant details — without any
unnecessary noise — from the internet and already provided a basic
recommendation.

The model takes each measurement — retrieved from the SQL
database — and checks if it can find the right information. Then, it
constructs the final answer and creates a cha� of the temperature
changes of the last few records of the plant. All of these go back to the UI
displaying the results.

Enterprise perspectives on large language models 20

Example output from Sma� Gardener

During this process, various issues emerged including the reproducibility,
handling of dates and resolving differences in categorical or numerical
values. Despite effo�s to ensure model parameters are consistent, the
results vary for the same output. Sometimes, the model can find
information for more features, while in other cases, for reasons currently
unknown, it provides a final output based on limited observations without
utilizing all the data available. When querying the database, it
occasionally uses the wrong dates and fails to retrieve the most recent
measurements, even if specifically asked and having the parameters set
accordingly.

Another hurdle arises when comparing different scaled measurements,
such as soil moisture information is currently stored in a categorical
variable (dry, moist and wet) meanwhile, the information found on the
internet (and scraped by the model) suggests different frequencies for
watering. This discrepancy hinders LLM to accurately assess watering
needs. Integrating the hardware components could resolve this issue,
enhancing the model’s accuracy and enabling it to create informed
recommendations and take necessary action.

Despite the challenges listed above, our experiment demonstrates the
significant potential of chaining technology to extend the utility of LLMs.

With increased adaptability, it can streamline various workflows to replace
manual tasks, including choosing the right neural networks for predictive
tasks, classification, regression, searching the web, connecting to an
internal database to retrieve knowledge and more.

My suggestions:
The current temperature of the philodendron ‘Imperial Green’ is 19.72 C, which falls within the ideal
range of 16-30 C. Therefore, the temperature is okay.

The current humidity level is 0.49 (assuming this is a relative humidity value is decinal form, i.e.,
49%), which is considered low for a “moderate” humidity level typically required by philodendron
‘Imperial Green’. It is suggested to increase the humidity level, perhaps by using a humidifier or
placing the plant on tray of water.

The soil condition is currently “dry”, while the ideal condition is “well-draining, water when top half
feels dry”. This suggests that the plant may need watering. It is suggested to water the plant until the
top half of the soil feels moist.

The light condition is given as a numerical value of 1723.28, while the ideal condition is described
qualitatively as “bright, indirect”. Without a clear way to conve� the numerical value to a qualitative
description, it’s not possible to definitively say whether the light condition is okay or not. however, if
the numerical value represents light intensity in lux, then it might be too high as “bright, indirect”
light typically corresponds to a lower lux value. it is suggested to adjust the light source or use a
shade to reduce the light intensity.

Enterprise perspectives on large language models 21

This high level of adaptability for LLMs opens a new perspective for
application development, making it possible to, for example, automate the
dashboard creation process. Tools such as anomaly detection modules,
packages to create cha�s, database connections to retrieve the data for
the cha�s and internet connectivity for competitor analysis will enable
users to define their needs in natural language and leave it to the LLM to
orchestrate the entire process, from creating the underlying logic to
connecting the individual pieces and, finally, provide quick and effective
output.

In the near future, the trajectory of LLM will likely shape their role as
primary source of competitive advantage for enterprises. The technology,
along with the systems built around it, is poised to reach new heights. As
the above experiments demonstrated, most of the building blocks are
already firmly in place and with the current pace of development and
adoption, the early growing pains will likely prove fleeting. Below, we
outline key takeaways, emphasizing that large language models have
immense potential to simplify and elevate enterprise use cases, with even
the tasks that are currently beyond leading models’ abilities appearing
well within reach in the foreseeable future.

OpenAI’s models are currently the most powe�ul LLMs, demonstrating
unmatched power and consistency when configured specific use cases.
Notable, they excel in delivering precise, relevant responses while
minimizing unnecessary noise. Their remarkable understanding of user
intents also sets them apa� from open-source models. Beyond their
reduced frequency of hallucinations, their effectiveness in high-stakes
communication is even underscored by their improved capability to
express unce�ainty by simply saying "I don't know" or "I am not sure".

As a result, when integrating LLMs into a general use case, our current
recommendation is to go with one of OpenAI’s models, while the
open-source route only becomes preferable when there is a highly
specific task at hand that necessitates a feature or characteristic found
only in an open-source model.

On a more critical note, it also became apparent during our experiments
that maintaining an OpenAI-based end-to-end solution may prove
prohibitively expensive and their fine-tuning system for customization also
has considerable limitations.

Final thoughts

OpenAI’s models are the ones to beat

Enterprise perspectives on large language models 22

The cu�ing edge is costly

Extending on the previous point, cu�ing edge technology comes at a cost.
LLMs are inherently resource-intensive. Even for inte�ace alone,
substantial GPU RAM (often exceeding 100 gigabyte) is necessary, making
hosting or using them locally on GPU cluster expensive and complex.
While open-source models themselves may be free, the associated
infrastructure costs for hosting locally or in the cloud much be
considered.

On the bright side, the ability to use models in overall less resource-heavy
systems is on the horizon, with intensive research effo�s directed at fi�ing
the inference of the big models into a simple environment using
quantization techniques to control costs and other resource demands.
However, there are already great hosting options, notably from Azure and
HuggingFace services.

Technologically, LLMs have reached a level of maturity that positions them
favorably for demanding, sensitive enterprise use cases with ongoing
developments reinforcing this suitability. Their general knowledge has
been extended to where there are barely any topics about which they
don’t have at least some usable information. These should also get
covered soon, with the development into novel methods to improve LLMs’
knowledge, like the plugin system or defining built-in functions.

LLMs display an exceptional aptitude for sequential thinking and creating
chain-of-thoughts cycles, enabling them to navigate complex scenarios
effectively, despite lacking real reasoning capabilities and interpretability
for humans due to the multitude of problems and solutions they handle
simultaneously.

Regarding open-source models, context window size remains a significant
limitation, with GPT-4’s 32K context size dwa�s that of the
LLaMa-2-based HuggingFace benchmark leaders, like the Platypus2,
whose context length is 4096 tokens — but there are reassuring
developments in this field. Innovations like Anthropic's Claude model,
achieving a context length of 100K tokens, show promise for greatly
expanding these boundaries.

The future is now — and more so tomorrow

Enterprise perspectives on large language models 23

Bálint Kovács

Szilvia Hodvogner

Author information

Balázs has a background in software development and has worked in a
diverse range of roles, including as a research fellow and assistant lecturer
at a top Hungarian university, a deep learning developer at a major
multinational company and, currently, as a consultant data scientist. He
enjoys diving deep into user data to uncover hidden insights and leverage
them to create effective solution prototypes.

Szilvia has extensive experience working for research-oriented companies,
where she has developed a deep understanding of predictive models and
NLP. At HCLTech, she currently works on NLP projects with a focus on LLM
solutions. She holds a master's degree in computer science, specializing in
a�ificial intelligence and computer vision.

Balázs Zempléni

Balázs holds a degree in Engineering and specializes in digital image and
signal processing. He has worked for multiple banks in various data
engineering and business intelligence roles. In recent years, he has focused
on developing an NLP solution to improve internal business processes
based on textual data. In addition to his work, Balázs is an avid presenter at
meetups and conferences.

HCLTech is a global technology company, home to 222,000+ people across
60 countries, delivering industry-leading capabilities centered around Digital,
Engineering and Cloud powered by a broad po�folio of technology services and
software. The company generated consolidated revenues of $12.3 billion over the
12 months ended December 2022. To learn how we can supercharge progress for
you, visit hcltech.com.

hcltech.com

